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Neutrinos

• Existence hypothesized to explain missing energy 
in beta decay (1930).

• Lightest of Standard Model fermions (mν < 1 eV)

• Interact through the weak force and gravity only.

• Cross sections are very small!
2

J. Daughhetee | BNL Physics Seminar | May 19, 2020



Neutrinos
• Abundantly produced in the Universe!

• Peculiar fit in the Standard Model:

• Anomalously small mass scale

• Large mixing-angle oscillations

• Potential additional ‘sterile’ flavors…
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Neutrino physics has been full of 
unexpected results; precision 

measurements and Standard Model 
tests are warranted!

IceCube

Hitoshi Murayama

LSND



Coherent Elastic Neutrino-Nucleus Scattering

• Clean prediction from the Standard Model – D. Freedman 1974

• Cross-section increases with energy as long as coherence condition is 
satisfied ( 𝑞 ≤ ~ 𝑅−1)

• Largest of all SM neutrino cross-sections at 1-100 MeV scale

• NC mediated: all flavors of neutrino can scatter via CEνNS

D. Akimov et al. (COHERENT). Science 357, 1123–1126 (2017)
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CEνNS Physics

Weak Mixing Angle
• Measurements featuring 

targets with differing Z/N ratios
• Sensitive probe of SM physics

M. Cadeddu and F. Dordei, Phys. Rev. D 99 033010 (2019)

Nuclear Form Factors
• Unknown to a few %
• Potentially inferable through high-

precision measurements.

Neutron Number Dependence
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CEνNS Physics – Dark Matter

arXiv:1707.06277

Near-Irreducible Background for Direct 
Detection Dark Matter Experiments
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CEνNS WIMP-Scatter

χχ

M
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CEνNS Physics – Supernovae

Supernova Dynamics
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Supernova Detection via CEνNS Liquid Xe

Lang et. al - Phys. Rev. D 94 (2016) no.10, 103009
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Detector Miniaturization
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Increased X-section -> Smaller Sizes

COHERENT CsI[Na] – 14.6 kg

• Detectors sensitive to CEνNS can have smaller 
masses and therefore increased portability.

• Potentially useful for monitoring of reactor 
activity and enforcing non-proliferation.
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Non-Standard Interactions
Potential Non-SM Vector Interactions

Modified Cross Section

Presence of these interactions can lead to suppression 
or enhancement of CEνNS rate w.r.t. Standard Model.

J. Barranco et al. Phys Rev D 76 (2007)
J. Billard, J. Johnston, B. Kavanagh. arXiv:1805.01798
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Constraining these interactions is essential for 
interpretation of oscillation results!

Non-Standard Interactions
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Long-baseline neutrino program seeks to precisely measure 
oscillation parameters, CP-violation, neutrino mass ordering (NMO).
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Detecting CEνNS 

D.Z. Freedman, Phys. Rev. D 9 (1974)
V.B. Kopeliovich and L.L. Frankfurt, ZhETF Pis. Red. 19 (1974)

Cross section may be high, but the signal is 
in the form of a low-energy nuclear recoil!

Detection requirements:

• Excellent background rejection

• Low E-threshold
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CEνNS Efforts
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Accelerator

Accelerator

Accelerator

Super CDMS-style Ge

Si CCD

LXe TPC

HPGe

Ge and Zn Bolometers

LAr

HPGe

LAr TPC

Gaseous Spherical 
Proportional Counters

Al and Ca Bolometers

HPGe



COHERENT at the Spallation 
Neutron Source
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The Spallation Neutron Source

• Primary objective of the Spallation Neutron 
Source (SNS) is the production of a large flux of 
neutrons for myriad physics, biology, and 
materials science studies.

• Neutrons are produced by the spallation of Hg 
nuclei during bombardment from accelerated 
protons.

• ~1 GeV protons are delivered to the Hg target at 
60 Hz in 400 ns FWHM bunches.

• Current production runs at 1.4 MW power; power 
upgrade and second target station in the future.
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SNS as a Neutrino Source

n flux is approximately 4.3x107 n cm-2 s-1 at 20 m
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The COHERENT Collaboration
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COHERENT Program

Staged approach: Observation -> Precision

Multi-target program to measure CEνNS 
cross section over wide range of N

CEνNS-induced recoil spectra
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Deployment at the SNS

Neutrino Alley
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First Light with CsI
• Observation of CEνNS in 14.6 kg CsI[Na] detector!

• 6.7σ significance with likelihood fit

• Best fit of 134±22 Signal Events within 1σ of SM Prediction: 173±48

• Uncertainties due to nuclear quenching, neutrino flux, nuclear form 
factor, etc.

• Beam OFF Data: 153.5 days ; Beam ON Data: 308.1 Days (7.48 GWhr)

• Results with larger dataset and new QF analysis soon!

– Best Fit

SM Prediction NSI Constraints

10.1126/science.aao0990
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COHERENT Current Operations

Data Analysis 
Underway

Subject of 
This Talk!
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The CENNS-10
Argon Detector
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Liquid Ar for CEvNS
• Bright scintillator (40 photons/keVee) 

• Well-known nuclear quenching factor

• Emission timescales: 
• 6 ns (singlet) 
• 1.6 μs (triplet)

• Electron recoils (ER) and nuclear recoils (NR) yield 
different ratio in exited state populations -> Pulse 
Shape Discrimination (PSD)

• Scintillation light wavelength: 128 nm (requires 
wavelength shifting)

• Benefit of using liquid noble gas – Scalability
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Nuclear Recoil e- / γ
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CENNS-10
• Loaned from J. Yoo et al from Fermilab.

• Single-phase liquid Ar scintillation detector located 28 
m from SNS target  (~2 x 107 ν / s )

• Engineering Run: Dec 2016 -> May 2017 
• 80 keVnr threshold
• No Pb shielding
• Analysis Results -> Phys. Rev. D100 (2019) no. 11, 115020

• First Production Run: July 2017 -> December 2018
• Dramatically improved light yield results in lower 

threshold (20 keVnr)
• 2x 8” Hamamatsu PMTs with 18% eff @ 400 nm
• Tetraphenyl butadiene (TPB) wavelength shifter 

coating Teflon walls and PMT glass.
• 24 kg fiducial volume.
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Data Collection
CENNS-10 First Production Run

CENNS-10 Engineering Run

Beam delivered to COHERENT detectors
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Triggering
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• 33 μs readout window roughly centered about POT 
time.

• Identical readout performed after delay of 14 ms to 
directly measure steady-state bkgs.

• CEvNS expected in both prompt and delayed regions 
while BRN measured only in prompt window.
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Data Selection / Analysis Steps
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• Pulse finding algorithm applied to triggered waveforms.

• Requirement of 2 photons in first 90ns on both PMTs.

• Pulse-shape discrimination variable “F90” is computed:
(Integral of WF in first 90 ns / Total WF Integral)

• Steady-state background characterized with anti-coincident data 
(delayed trigger).

• Beam-related neutrons (BRN) measured with dedicated ‘neutron’ 
runs which lack water shielding.

• Cuts on energy, F90, and time established prior to box-opening.

• 3D Likelihood fit applied to final dataset .

• Two separate analyses performed, this talk details US analysis!
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41.5 keV

Energy Calibrations
83mKr Calibration

• Calibrations performed using multiple 
gamma sources (57Co, 241Am, 83mKr).

• Observed light yield: 4.6 ± 0.4 p.e./keVee

• 9.5% resolution at 41.5 keVee

• Linearity of detector response over energy 
range of interest.

• Provides ADC -> keVee conversion. (ee –
electron equivalent)

Neutron Calibrations

• AmBe – Used to measure NR response in 
detector and model CEvNS signal.

• DT Generator – Used to confirm veracity 
of external neutron simulations 
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LAr Quenching Factor
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• Defined as ratio of measured NR energy to observed ER 
of known energy.

• Several measurement for noble gases due to use in dark 
matter experiments, etc.

• Global analysis performed with linear energy 
dependence.

• Approximately 2% uncertainty in the CEνNS analysis 
energy ROI.

• Provides keVnr -> keVee conversion. (nr – nuclear recoil)
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Beam-Related Neutrons
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M.R. Heath PhD thesis (IU 2019)
Phys. Rev. D 11 115020 (2019)

• Total of 1.8 GWhr of data taken during CENNS-10 ‘Engineering’ run.

• Lower light yield -> 80 keVnr threshold ; not sensitive to CEvNS

• Analysis of this data does allow for characterization of BRN:

• No ‘delayed’ BRNs observed.

• Measurement of BRNs in prompt window used to inform/verify 
GEANT4 simulation and confirm previous measurements with 
dedicated neutron detectors.
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Beam-Related Neutrons

BRN increase by an order of 
magnitude with tank drained.

• Multiple data taking periods without water shielding (0.54 GWhr of 
integrated beam power).

• These “neutron” runs are used to tune GEANT4 simulation.

• Optimized simulation is used in turn to predict rate of BRN events in 
unblinded data.

• Uncertainty envelope for prediction includes simulation uncertainties.

• Scaled simulation is directly informed by the data.
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Analysis Overview
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PDF in 
t,F90,keVee

Steady state 
background

Beam-related 
neutrons

CEνNS Delayed 
neutrons

SM prediction
QF

No-water data
GEANT4

Direct from off-
beam triggersExpect ~0

data in 
t,F90,keVee

waveform

pulse-finding

candidate 
event

uncalibrated
3D data

compute F90 γ-source calibration

Data to be 
fitted

apply cuts

Predictions

Data
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Shape and Rate Predictions
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• 3D binned likelihood fit in energy, 
F90, and time.

• Waveform / event quality cuts.

• Analysis Cuts:

• Energy -> 0-120 keVee

• F90 -> 0.5-0.9

• Time -> -0.1-4.9 μs
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Systematic Uncertainties
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• Potential changes to predictions are examined 
with extensive MC simulations and pseud-
datasets.

• Systematics sorted into two classes:

• Top - Change in SM predicted rate

• Bottom - Change in 3D pdf shape (E, F90, t)
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Unboxing…
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Fit Results
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• Best fit for N CEvNS is 159 ± 43 (stat) ± 14 (syst)

• Null hypothesis rejected at 3.9σ (stat only)

• Null hypothesis rejected at 3.5σ (stat+syst)

• Validity of Wilks’ theorem checked with pseudo-data.

• Result within 1-σ of SM prediction.

SM 
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Fit Projections
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Best Fit 1-D 
Projections
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CEνNS Cross Section
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• Combine best fit CEvNS counts with flux, 
fid. volume, efficiency uncertainties.

• Obtain flux-averaged cross section:

stat dominated
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Constraints on Non-Std Interactions
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• Assume non-zero electron flavor-diagonal vectorlike NSI (all other ε set to 0).

• Fit results used to compute allowed regions in parameter space.
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Parallel Analysis Comparison
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• Separate blind analysis performed by Russian collaborators.

• Independent reconstruction software and stricter cuts for 
analysis level dataset.

• Results consistent with US analysis.
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Future of CENNS-10

J. Daughhetee | BNL Physics Seminar | May 19, 2020

• Additional data to be analyzed (3 GWhr and counting) with potential 
improvements in neutron shielding, analysis methods, and 
understanding of systematics.

• Potential modifications / testing:

• Move detector to vacated CsI location (lower n bkg, higher ν flux)

• Additional neutron shielding in current location.

• Reduced steady-state bkg with underground Ar.

• Xe-doping for increased light output.

• Test photo-detection schemes for planned ton-scale detector.

• Test wavelength shifting schemes.
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CENNS-750
• Scaled up single-phase LAr detector featuring 610 kg fiducial mass.

• Photon detection system designed to maintain or exceed 20 keVnr threshold.

• Will fit in existing CENNS-10 location.

• Two possible configurations (SiPMs or 3” PMTS)

• Ongoing R&D at IU, ORNL, and Tufts.
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Precision Physics with CENNS-750

• Signal expectation of ~3000 CEvNS per SNS-year

• Approx. 400 inelastic CC and NC events per SNS-year
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Important measurement for DUNE!



Accelerator-Produced Dark Matter

• Potential for vector portal DM via neutral pions produced 
at the target.

• Signal Expectation:
• NR events with beam timing profile 
• Recoil spectrum depends on mediator and DM mass.

• Improved understanding and mitigation of beam-related 
neutrons improves sensitivity.
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Future COHERENT Efforts

HPGe Array Heavy Water CerenkovModular NaI[Tl] Array

Use known νe – d cross 
section (2-3%) to constrain 
ν–flux normalization at SNS

16 kg array for measuring 
CEvNS on Ge. Low threshold 
and high Signal-to-Bkg ratio.

Ton-scale array to measure 
CEνNS on 23Na and CC on 127I 

cross sections.
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Summary and Outlook

• CEνNS measurements offer rich physics potential:
• Standard Model Tests
• Neutrino Electromagnetic Properties
• Nuclear Physics
• Supernova Dynamics (Detection?)

• COHERENT aims to build upon first observation results in multiple 
isotopes and make precision measurements of this process.

• Results of CENNS-10 analysis are the first measurement of CEνNS 
on Ar and lowest N measurement to date.

• Forthcoming results with Ge, NaI, and Ar will map out the 
expected N-dependence of this process.
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Auxiliary Slides
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Fit Projections
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Best Fit 1-D 
Projections

Best Fit 1-D Projections 
with CEνNS = 0
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